»óÇ° ¾È³» ¹× ȯºÒ, ±³È¯, ¹è¼Û¹®ÀÇ | |
- °¡°Ô ÀüȹøÈ£ : | 1544-1900 |
- Àüȹ®ÀÇ ½Ã°£ : |
¿ÀÀü 9½ÃºÎÅÍ ¿ÀÈÄ 6½Ã±îÁö (¸ÅÁÖ ¿ù¿äÀÏ, È¿äÀÏ, ¼ö¿äÀÏ, ¸ñ¿äÀÏ, ±Ý¿äÀÏ, °øÈÞÀÏ Á¦¿Ü) |
- °¡°Ô À̸ÞÀÏ : | ink@kyobobook.co.kr |
- ÀÌ¿ë Åùèȸ»ç : | CJ´ëÇÑÅë¿î |
ÆǸŰ¡°ÔÁ¤º¸ |
|
- »ç¾÷ÀÚ¸í : | (ÁÖ)±³º¸¹®°í |
- »ç¾÷ÀÚµî·Ï¹øÈ£ : | 102-81-11670 |
- Åë½ÅÆǸž÷½Å°í : | 01-0653 |
- Çö±Ý¿µ¼öÁõ : ¹ß±Þ°¡´É |
|
ÀüÈÁÖ¹® ¹× °áÁ¦¹®ÀÇ |
|
- ²ÉÇÇ´Â ¾Æħ¸¶À» : | 1644-8422 |
°¡°Ô¿Í Á÷°Å·¡¸¦ ÇÏ½Ã¸é ²É¼ÛÀÌ Àû¸³ ¹× °¢Á¾ ÇýÅÿ¡¼ Á¦¿ÜµÇ°í, ¸¸ÀÏÀÇ ¹®Á¦°¡ ¹ß»ýÇÏ´Â °æ¿ì¿¡µµ ²É¸¶ÀÇ µµ¿òÀ» ¹ÞÀ¸½Ç ¼ö ¾ø½À´Ï´Ù. °¡°ÔÀÇ ºÎ´çÇÑ ¿ä±¸, ºÒ°øÁ¤ ÇàÀ§ µî¿¡ ´ëÇؼµµ ²É¸¶·Î Á÷Á¢ ÀüÈÁÖ¼¼¿ä. |
»ó¼¼Á¤º¸ | ±¸¸ÅÈıâ (0) | »óÇ° Q&A (0) | ¹è¼Û/±³È¯/ȯºÒ ¾È³» |
Ã¥¼Ò°³À¯Çϸ² Ä¿¸®Å§·³ Essential Math Series °æ½Ã ½ÃÇè ´ëºñ¸¦ À§ÇÑ Ã¥ Áß AMC 10(12), CEMC, ARML Local, Purple Comet Math Meet, Spirit of Math and Stanford SMILE International Contest¿Í °°Àº ½ÃÇèÀ» ´ëºñÇÏ´Â ±³ÀçÀÔ´Ï´Ù. AMC 10À» ÀÌ¹Ì ½ÃÀÛÇÏ´Â 8, 9, 10Çгâ Çѱ¹ ÇлýµéÀÌ AIME QualificationÀ» ¹Þ±â À§ÇØ °øºÎÇØ¾ß ÇÏ´Â Çʵ¶¼°¡ µÇ±æ ¹Ù¶ó´Â ¸¶À½À¸·Î ÁýÇÊÇÏ¿´½À´Ï´Ù. ÇöÀç ¹Ì±¹ ¸í¹® Boarding School ¹× ±¹³»¿Ü ¿Ü±¹ÀÎ Çб³¿¡ ´Ù´Ï´Â 8, 9, 10Çгâ ÇлýµéÀÌ AMC 10(12) ¹× ´Ù¸¥ °æ½Ã ½ÃÇè¿¡¼ ½ÇÁ¦·Î Àû±ØÀûÀ¸·Î »ç°í(think)ÇÏ°í, ¹®Á¦ Ç®ÀÌÀÇ ¹æÇâÀ» ÀâÀ» ¼ö ÀÖ±æ ¹Ù¶ó¸é¼ Ã¥À» ½è½À´Ï´Ù.
ÀúÀÚ¼Ò°³ÀúÀÚ : À¯Çϸ²
Harim Yoo
¹Ì±¹ Northwestern University,
B.A. in Mathematics and Economics
(³ë½º¿þ½ºÅÏ ´ëÇб³ ¼öÇаú/°æÁ¦Çаú Á¹¾÷)
¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°»ç
¾Ð±¸Á¤ ÇöÀå°ÀÇ ReachPrep ¿øÀå
°íµîÇб³ ½ÃÀý ¹®°ú¿´´Ù°¡, ¹Ì±¹ ³ë½º¿þ½ºÅÏ ´ëÇб³ ÇкΠ½ÃÀý ÀçÇÐ Áß ¼öÇп¡ ¸Å ·áµÇ¾î, Calculus ¹× Multivariable Calculus Á¶±³ È°µ¿ ¹× ¼öÇÐ °ÀÇ È°µ¿À» ÇØ¿Â ¹®/ÀÌ°ú¸¦ ¾Æ¿ì¸£´Â µ¶Æ¯ÇÑ ÀÌ·ÂÀ» °¡Áø °»çÀÌ´Ù. ÇöÀç ¾Ð±¸Á¤ ¹Ì±¹¼öÇÐ/°úÇÐÀü¹® ÇпøÀ¸·Î ReachPrep(¸®Ä¡ÇÁ·¾)À» ¿î¿µ ÁßÀ̸ç, ¹Ì±¹ ¸í¹® º¸µù½ºÄð Çлýµé°ú ±¹³» ¿Ü±¹ÀÎÇб³ ¹× ±¹Á¦Çб³ ÇлýµéÀ» ²ÙÁØÈ÷ ÁöµµÇÏ¸é¼ ¸í¼ºÀ» ½×¾Æ°¡°í ÀÖ´Ù.
2010³â ÀÚ±âÁÖµµÇнÀ¼ÀÎ ¡°¸ôÀÔ°øºÎ¡±¸¦ ÁýÇÊÇÑ ÀÌÈÄ, ¹Ì±¹ Áß°í±³¼öÇп¡ °ü½ÉÀ» º» °ÝÀûÀ¸·Î °¡Áö°Ô µÇ¾ú°í, ÇöÀç À¯Çϸ²Ä¿¸®Å§·³ Essential Math Series¸¦ ÁýÇÊÇÏ¿©, ¾Ð±¸Á¤ ÇöÀå°ÀÇ ¹Ì±¹¼öÇÐÇÁ¸®Æнº¸¦ ÅëÇØ, ¾ÐµµÀûÀ¸·Î ¸¹Àº ÇлýµéÀÇ Çǵå¹éÀ» Åë ÇØ, ¹ßÀüÀûÀ¸·Î ±³Àç ÁýÇÊ¿¡ Èû¾²°í ÀÖ´Ù.
À¯ÇÐºÐ¾ß ÀÎÅÍ³Ý °ÀÇ 1À§ »çÀÌÆ®ÀÎ ¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°»ç Áß ÇÑ ¸íÀ¸·Î ¹Ì ±¹ ¼öÇÐ Ä¿¸®Å§·³ÀÇ ±âÃʼöÇкÎÅÍ °æ½Ã¼öÇбîÁö ¸ðµÎ ¿µ¾î¿Í Çѱ¹¾î·Î °ÀÇÇϸé¼, ½ÇÀü °æÇèÀ» ½×¾Æ ±× Àü¹®¼ºÀ» È®°íÈ÷ ÇÏ°í ÀÖ´Ù.
[Àú ¼] ¸ôÀÔ°øºÎ
The Essential Workbook for SAT Math Level 2
Essential Math Series ½Ã¸®Áî
¸ñÂ÷Preface 3
ÀÌ Ã¥ÀÇ Æ¯Â¡ 4
TOPIC 1 Divisor and Remainders 9
1.1 Divisor and Remainders 10
1.2 Parity and More 13
1.3 Prime Factorization 23
TOPIC 2 Least Common Multiple and Greatest Common Divisor 35
2.1 Least Common Multiple 36
2.2 Greatest Common Divisor 46
2.3 Eulidean Algorithm and Bezout's Identity 56
2.4 Application of LCM and GCD 68
TOPIC 3 Counting Divisors and More Arithmetic 79
3.1 Counting Divisors and More Arithmetic 80
TOPIC 4 Base-N Expression 97
4.1 Base-N Expression 98
TOPIC 5 Modular Arithmetic 115
5.1 Basic Knowledge of Modular Arithmetic 116
5.2 Application of Modular Arithmetic 126
TOPIC 6 Mixed Practice 139 |
±³È¯ ¹× ȯºÒ °¡´É |
»óÇ°¿¡ ¹®Á¦°¡ ÀÖÀ» °æ¿ì |
1) »óÇ°ÀÌ Ç¥½Ã/±¤°íµÈ ³»¿ë°ú ´Ù¸£°Å³ª ºÒ·®(ºÎÆÐ, º¯Áú, ÆļÕ, Ç¥±â¿À·ù, À̹°È¥ÀÔ, Áß·®¹Ì´Þ)ÀÌ ¹ß»ýÇÑ °æ¿ì - ½Å¼±½ÄÇ°, ³ÃÀå½ÄÇ°, ³Ãµ¿½ÄÇ° : ¼ö·ÉÀÏ ´ÙÀ½³¯±îÁö ½Åû - ±âŸ »óÇ° : ¼ö·ÉÀϷκÎÅÍ 30ÀÏ À̳», ±× »ç½ÇÀ» ¾È ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏ À̳» ½Åû 2) ±³È¯ ¹× ȯºÒ½Åû ½Ã ÆǸÅÀÚ´Â »óÇ°ÀÇ »óŸ¦ È®ÀÎÇÒ ¼ö ÀÖ´Â »çÁøÀ» ¿äûÇÒ ¼ö ÀÖÀ¸¸ç »óÇ°ÀÇ ¹®Á¦ Á¤µµ¿¡ µû¶ó Àç¹è¼Û, ÀϺÎȯºÒ, ÀüüȯºÒÀÌ ÁøÇàµË´Ï´Ù. ¹ÝÇ°¿¡ µû¸¥ ºñ¿ëÀº ÆǸÅÀÚ ºÎ´ãÀ̸ç ȯºÒÀº ¹ÝÇ°µµÂøÀϷκÎÅÍ ¿µ¾÷ÀÏ ±âÁØ 3ÀÏ À̳»¿¡ ¿Ï·áµË´Ï´Ù. |
´Ü¼øº¯½É ¹× ÁÖ¹®Âø¿ÀÀÇ °æ¿ì |
1) ½Å¼±½ÄÇ°, ³ÃÀå½ÄÇ°, ³Ãµ¿½ÄÇ° ÀçÆǸŰ¡ ¾î·Á¿î »óÇ°ÀÇ Æ¯¼º»ó, ±³È¯ ¹× ȯºÒÀÌ ¾î·Æ½À´Ï´Ù. 2) ÈÀåÇ° ÇǺΠƮ·¯ºí ¹ß»ý ½Ã Àü¹®ÀÇ Áø´Ü¼ ¹× ¼Ò°ß¼¸¦ Á¦ÃâÇϽøé ȯºÒ °¡´ÉÇÕ´Ï´Ù. ÀÌ °æ¿ì Á¦¹Ýºñ¿ëÀº ¼ÒºñÀÚ ºÎ´ãÀ̸ç, ¹è¼Ûºñ´Â ÆǸÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. ÇØ´ç ÈÀåÇ°°ú ÇǺΠƮ·¯ºí°úÀÇ »ó´çÇÑ Àΰú°ü°è°¡ ÀÎÁ¤µÇ´Â °æ¿ì ¶Ç´Â Áúȯġ·á ¸ñÀûÀÇ °æ¿ì¿¡´Â Áø´Ü¼ ¹ß±Þºñ¿ëÀ» ÆǸÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. 3) ±âŸ »óÇ° ¼ö·ÉÀϷκÎÅÍ 7ÀÏ À̳» ½Åû, ¿Õº¹¹è¼Ûºñ´Â ¼ÒºñÀÚ ºÎ´ã 4) ¸ð´ÏÅÍ ÇØ»óµµÀÇ Â÷ÀÌ·Î »ö»óÀ̳ª À̹ÌÁö°¡ ´Ù¸¥ °æ¿ì ´Ü¼øº¯½É¿¡ ÀÇÇÑ ±³È¯ ¹× ȯºÒÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. |
|
±³È¯ ¹× ȯºÒ ºÒ°¡ |
1) ½Åû±âÇÑÀÌ Áö³ °æ¿ì 2) ¼ÒºñÀÚÀÇ °ú½Ç·Î ÀÎÇØ »óÇ° ¹× ±¸¼ºÇ°ÀÇ Àüü ¶Ç´Â ÀϺΰ¡ ¾ø¾îÁö°Å³ª ÈѼÕ, ¿À¿°µÇ¾úÀ» °æ¿ì 3) °³ºÀÇÏ¿© ÀÌ¹Ì ¼·ÃëÇÏ¿´°Å³ª »ç¿ë(Âø¿ë ¹× ¼³Ä¡ Æ÷ÇÔ)ÇØ »óÇ° ¹× ±¸¼ºÇ°ÀÇ °¡Ä¡°¡ ¼Õ»óµÈ °æ¿ì 4) ½Ã°£ÀÌ °æ°úÇÏ¿© »óÇ°ÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì 5) »ó¼¼Á¤º¸ ¶Ç´Â »ç¿ë¼³¸í¼¿¡ ¾È³»µÈ ÁÖÀÇ»çÇ× ¹× º¸°ü¹æ¹ýÀ» ÁöÅ°Áö ¾ÊÀº °æ¿ì 6) »çÀü¿¹¾à ¶Ç´Â ÁÖ¹®Á¦ÀÛÀ¸·Î ÅëÇØ ¼ÒºñÀÚÀÇ ÁÖ¹®¿¡ µû¶ó °³º°ÀûÀ¸·Î »ý»êµÇ´Â »óÇ°ÀÌ ÀÌ¹Ì Á¦ÀÛÁøÇàµÈ °æ¿ì 7) º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì 8) ¸À, Çâ, »ö µî ´Ü¼ø ±âÈ£Â÷ÀÌ¿¡ ÀÇÇÑ °æ¿ì |