»óÇ° ¾È³» ¹× ȯºÒ, ±³È¯, ¹è¼Û¹®ÀÇ | |
- °¡°Ô ÀüȹøÈ£ : | 1544-1900 |
- Àüȹ®ÀÇ ½Ã°£ : |
¿ÀÀü 9½ÃºÎÅÍ ¿ÀÈÄ 6½Ã±îÁö (¸ÅÁÖ ¿ù¿äÀÏ, È¿äÀÏ, ¼ö¿äÀÏ, ¸ñ¿äÀÏ, ±Ý¿äÀÏ, °øÈÞÀÏ Á¦¿Ü) |
- °¡°Ô À̸ÞÀÏ : | ink@kyobobook.co.kr |
- ÀÌ¿ë Åùèȸ»ç : | CJ´ëÇÑÅë¿î |
ÆǸŰ¡°ÔÁ¤º¸ |
|
- »ç¾÷ÀÚ¸í : | (ÁÖ)±³º¸¹®°í |
- »ç¾÷ÀÚµî·Ï¹øÈ£ : | 102-81-11670 |
- Åë½ÅÆǸž÷½Å°í : | 01-0653 |
- Çö±Ý¿µ¼öÁõ : ¹ß±Þ°¡´É |
|
ÀüÈÁÖ¹® ¹× °áÁ¦¹®ÀÇ |
|
- ²ÉÇÇ´Â ¾Æħ¸¶À» : | 1644-8422 |
°¡°Ô¿Í Á÷°Å·¡¸¦ ÇÏ½Ã¸é ²É¼ÛÀÌ Àû¸³ ¹× °¢Á¾ ÇýÅÿ¡¼ Á¦¿ÜµÇ°í, ¸¸ÀÏÀÇ ¹®Á¦°¡ ¹ß»ýÇÏ´Â °æ¿ì¿¡µµ ²É¸¶ÀÇ µµ¿òÀ» ¹ÞÀ¸½Ç ¼ö ¾ø½À´Ï´Ù. °¡°ÔÀÇ ºÎ´çÇÑ ¿ä±¸, ºÒ°øÁ¤ ÇàÀ§ µî¿¡ ´ëÇؼµµ ²É¸¶·Î Á÷Á¢ ÀüÈÁÖ¼¼¿ä. |
»ó¼¼Á¤º¸ | ±¸¸ÅÈıâ (0) | »óÇ° Q&A (0) | ¹è¼Û/±³È¯/ȯºÒ ¾È³» |
Ã¥¼Ò°³ÀÌ Ã¥Àº ÀüÀÚ±âÇÐÀ» ´Ù·é À̷мÀÌ´Ù. ÀüÀÚ±âÇÐÀÇ ±âÃÊÀûÀÌ°í Àü¹ÝÀûÀÎ ³»¿ëÀ» ÇнÀÇÒ ¼ö ÀÖ´Ù.
¸ñÂ÷Translator' s Preface
Dedication
Contents
Steele's Preface to the First Edition
1 Introduction
2 Field Properties
2.1 Introduction
2.2 Maxwell's Equations in the Dynamic, Quasi-Static, and Static Cases
2.3 Polarization and Magnetization
2.4 Laws for Static Fields in Unbounded Regions
2.5 Integral Represntations for Quasi-Static Fields Using the Helmholtz Theorem
2.6 Equivalent Configurations
2.7 Steady-State Dynamic Problems and Phasor Field Represntations
2.8 Continuity Conditions of Fields at a Medium Discontinuity
References
3 Problem Definition
3.1 Introduciton
3.2 Field Problem Domains, Sourece Problem Domains, Interior Problems, and Exterior Problems
3.3 Iis the Problem Static, Quasi-Static, or Dynamic?
3.4 What Field Iss to Be Computed?
3.5 Is the Problem Two-Dimensional or Three-Dimensional?
3.6 The Medium
3.7 Boundary Conditions and Uniqueness of Solutions
References
4 Linear Spaces in Field Computations
4.1 introduciton
4.2 Basis Functions
4.3 Shape Functions
4.4 Finite Elements and Shape Functions of Global Coordinates in Two-Dimensional Problem Domains
4.5 Isopapametric Shape Function in Two-Dimensions
4.6 Finite Elements and Shape Function of Global Coordinates in Three-Dimensional Problem Domains
References
5 Projection Methods in Field Computations
5.1 Introduction
5.2 Special Space in Field Computations
5.3 Operators in Field Computations
5.4 Approaches Used in Obtating Approximate Solutions to Field Problems
5.5 Finite Element Method for Interior Problems
5.6 Integral Equation Method
5.7 Projecjton Methods
5.8 Orthogonal Projection Methods
References
6 Finite Element Method for Interior Problems
6.1 Introduction
6.2 Formulaton of Finite Element Method for Interior Problems
6.3 Computation of Linear System for Finite Element Method
6.4 Sample Problem
References
7 Finite Element Method for Exterior Problems
7.1 Introduction
7.2 McDonald-Wexler Algoritm
7.3 Silvester et al. Algoritm
7.4 Mapping Algorithms
References
8 Automatic and Adaptive Mesh Generation
8.1 Introduciton
8.2 Preliminary Mesh Generation
8.3 Delaunay Tessellation
8.4 An Algorithm for Local and Globla Error Estimation
8.5 Mesh Refinement Algoritm
References
9 Integral Equation Method
9.1 Introduction
9.2 Linear and Unform Media in Continunity Subdomains
9.3 Saturable, Nonlinear, and Nonuniform Media in Continuity Subdomains
9.4 Numerical Soluton of Integral Equations-General Approach
9.5 Finite Elements and Basis Functions Used in the Integral Equation Method
9.6 Integral Equation Numerical Solution by the Collocation Method
9.7 Integral Equation Numerical Solution by the Galerkin Method
9.8 Numerical Integration
9.9 Sample Problem
References
10 Static Magnetic Problem
10.1 Introduction
10.2 Interior Static Field Problems
10.3 Exterior Static Problems Approximated by Interior Problems
10.4 Exterior Mangetic Field Static Problem
10.5 Static Mangetic Field in a Saturable Medium
References
11 Eddy Current Problem
11.1 Introduction
11.2 Commonly Used Baisc Formulations for the Eddy Current Problem
11.3 Two-Dimensional Eddy Current Problem
11.4 Three-Dimensional Steady-State Eddy Current Problem
11.5 Transient Eddy Current Problem
References
Glossary
Appendix A Derivation of the Helmholtz's Theorem
Appendix B Properties of the Mangetic Vector Potential, A
Appendix C Proof Regarding Split of Quadrangle into Two Triangles
Appendix D Derivation of Formulations Used in the Csendes-Shenton Adaptive Mesh Algorithm
Appendix E Integral Expressions for Scalar Potential from Green's Theotem
Index |
±³È¯ ¹× ȯºÒ °¡´É |
»óÇ°¿¡ ¹®Á¦°¡ ÀÖÀ» °æ¿ì |
1) »óÇ°ÀÌ Ç¥½Ã/±¤°íµÈ ³»¿ë°ú ´Ù¸£°Å³ª ºÒ·®(ºÎÆÐ, º¯Áú, ÆļÕ, Ç¥±â¿À·ù, À̹°È¥ÀÔ, Áß·®¹Ì´Þ)ÀÌ ¹ß»ýÇÑ °æ¿ì - ½Å¼±½ÄÇ°, ³ÃÀå½ÄÇ°, ³Ãµ¿½ÄÇ° : ¼ö·ÉÀÏ ´ÙÀ½³¯±îÁö ½Åû - ±âŸ »óÇ° : ¼ö·ÉÀϷκÎÅÍ 30ÀÏ À̳», ±× »ç½ÇÀ» ¾È ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏ À̳» ½Åû 2) ±³È¯ ¹× ȯºÒ½Åû ½Ã ÆǸÅÀÚ´Â »óÇ°ÀÇ »óŸ¦ È®ÀÎÇÒ ¼ö ÀÖ´Â »çÁøÀ» ¿äûÇÒ ¼ö ÀÖÀ¸¸ç »óÇ°ÀÇ ¹®Á¦ Á¤µµ¿¡ µû¶ó Àç¹è¼Û, ÀϺÎȯºÒ, ÀüüȯºÒÀÌ ÁøÇàµË´Ï´Ù. ¹ÝÇ°¿¡ µû¸¥ ºñ¿ëÀº ÆǸÅÀÚ ºÎ´ãÀ̸ç ȯºÒÀº ¹ÝÇ°µµÂøÀϷκÎÅÍ ¿µ¾÷ÀÏ ±âÁØ 3ÀÏ À̳»¿¡ ¿Ï·áµË´Ï´Ù. |
´Ü¼øº¯½É ¹× ÁÖ¹®Âø¿ÀÀÇ °æ¿ì |
1) ½Å¼±½ÄÇ°, ³ÃÀå½ÄÇ°, ³Ãµ¿½ÄÇ° ÀçÆǸŰ¡ ¾î·Á¿î »óÇ°ÀÇ Æ¯¼º»ó, ±³È¯ ¹× ȯºÒÀÌ ¾î·Æ½À´Ï´Ù. 2) ÈÀåÇ° ÇǺΠƮ·¯ºí ¹ß»ý ½Ã Àü¹®ÀÇ Áø´Ü¼ ¹× ¼Ò°ß¼¸¦ Á¦ÃâÇϽøé ȯºÒ °¡´ÉÇÕ´Ï´Ù. ÀÌ °æ¿ì Á¦¹Ýºñ¿ëÀº ¼ÒºñÀÚ ºÎ´ãÀ̸ç, ¹è¼Ûºñ´Â ÆǸÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. ÇØ´ç ÈÀåÇ°°ú ÇǺΠƮ·¯ºí°úÀÇ »ó´çÇÑ Àΰú°ü°è°¡ ÀÎÁ¤µÇ´Â °æ¿ì ¶Ç´Â Áúȯġ·á ¸ñÀûÀÇ °æ¿ì¿¡´Â Áø´Ü¼ ¹ß±Þºñ¿ëÀ» ÆǸÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. 3) ±âŸ »óÇ° ¼ö·ÉÀϷκÎÅÍ 7ÀÏ À̳» ½Åû, ¿Õº¹¹è¼Ûºñ´Â ¼ÒºñÀÚ ºÎ´ã 4) ¸ð´ÏÅÍ ÇØ»óµµÀÇ Â÷ÀÌ·Î »ö»óÀ̳ª À̹ÌÁö°¡ ´Ù¸¥ °æ¿ì ´Ü¼øº¯½É¿¡ ÀÇÇÑ ±³È¯ ¹× ȯºÒÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. |
|
±³È¯ ¹× ȯºÒ ºÒ°¡ |
1) ½Åû±âÇÑÀÌ Áö³ °æ¿ì 2) ¼ÒºñÀÚÀÇ °ú½Ç·Î ÀÎÇØ »óÇ° ¹× ±¸¼ºÇ°ÀÇ Àüü ¶Ç´Â ÀϺΰ¡ ¾ø¾îÁö°Å³ª ÈѼÕ, ¿À¿°µÇ¾úÀ» °æ¿ì 3) °³ºÀÇÏ¿© ÀÌ¹Ì ¼·ÃëÇÏ¿´°Å³ª »ç¿ë(Âø¿ë ¹× ¼³Ä¡ Æ÷ÇÔ)ÇØ »óÇ° ¹× ±¸¼ºÇ°ÀÇ °¡Ä¡°¡ ¼Õ»óµÈ °æ¿ì 4) ½Ã°£ÀÌ °æ°úÇÏ¿© »óÇ°ÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì 5) »ó¼¼Á¤º¸ ¶Ç´Â »ç¿ë¼³¸í¼¿¡ ¾È³»µÈ ÁÖÀÇ»çÇ× ¹× º¸°ü¹æ¹ýÀ» ÁöÅ°Áö ¾ÊÀº °æ¿ì 6) »çÀü¿¹¾à ¶Ç´Â ÁÖ¹®Á¦ÀÛÀ¸·Î ÅëÇØ ¼ÒºñÀÚÀÇ ÁÖ¹®¿¡ µû¶ó °³º°ÀûÀ¸·Î »ý»êµÇ´Â »óÇ°ÀÌ ÀÌ¹Ì Á¦ÀÛÁøÇàµÈ °æ¿ì 7) º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì 8) ¸À, Çâ, »ö µî ´Ü¼ø ±âÈ£Â÷ÀÌ¿¡ ÀÇÇÑ °æ¿ì |