°øÀ¯Çϱâ
Àü°è¿Í ÀÚ°èÀÇ ¼öÄ¡°è»ê
±¸¸ÅÈıâ 0°Ç
¤ýµµ¼­Á¤º¸ ÀúÀÚ : Charles W.Steele
ÃâÆÇ»ç : È«¸ª
2022³â 06¿ù 10ÀÏ Ãâ°£  |  ISBN : 1156000416  |  279ÂÊ  |  ±Ô°Ýèâ  |  2ÆÇ
¤ý±³º¸È¸¿ø ±³º¸¹®°í ID ¿¬°áÇϱâ
µµ¼­¸¦ ±¸ÀÔÇÏ½Ã¸é ±³º¸¹®°í¿Í ²É¸¶ÀÇ È¸¿øÇýÅÃÀ» ÇÔ²²
¹ÞÀ¸½Ç ¼ö ÀÖ½À´Ï´Ù.
¤ý²É¸¶°¡ 29,000¿ø
¤ýÃß°¡ÇýÅà ²É 3¼ÛÀÌ
²É¼ÛÀÌÁö°© ¸¸µé±â>
²É¼ÛÀÌ Àû¸³À» À§Çؼ­ '²É¼ÛÀÌÁö°©'À» ¸¸µå¼Å¾ß ÇÕ´Ï´Ù.
¤ý¹è¼ÛÁö¿ª ±¹³»
¤ý¹è¼Ûºñ
Á¶°ÇºÎ¹«·á¹è¼Û
  • ÀÌ °¡°ÔÀÇ ¹«·á¹è¼Û »óÇ°À» ÇÔ²² ÁÖ¹®Çϰųª, ÃÑÁÖ¹®±Ý¾×ÀÌ 15,000¿ø ÀÌ»óÀÌ¸é ¹«·á¹è¼Û.
  • 15,000¿ø ¹Ì¸¸ÀÌ¸é ¹è¼Ûºñ 2,500¿ø °í°´ºÎ´ã
  • µµ¼­»ê°£/Á¦ÁÖµµ´Â Ãß°¡¿îÀÓºñ ºÎ°úµÉ ¼ö ÀÖÀ½
2ÀÏ À̳» Ãâ°í
¤ý¼ö·®
ÃÑ ÇÕ°è±Ý¾×  ¿ø
Âò
¼±¹°
Àå¹Ù±¸´Ï ´ã±â
¹Ù·Î ±¸¸ÅÇϱâ

Àå¹Ù±¸´Ï¿¡ ´ã¾Ò½À´Ï´Ù. Àå¹Ù±¸´Ï¸¦ È®ÀÎ ÇϽðڽÀ´Ï±î?

¼îÇΰè¼ÓÇϱâ
Àå¹Ù±¸´Ïº¸±â
¤ýÀÌ °¡°ÔÀÇ ´Ù¸¥ »óÇ° ¸ðµç»óÇ°º¸±â+
15,000¿ø
13,500¿ø 10%¡é
15,000¿ø
13,500¿ø 10%¡é
16,800¿ø
15,120¿ø 10%¡é
46,800¿ø
42,120¿ø 10%¡é
²ÞÀ» ÇÇ¿ì´Â ¼¼»ó, ÀÎÅÍ³Ý ±³º¸¹®°íÀÔ´Ï´Ù.
²ÞÀ» ÇÇ¿ì´Â ¼¼»ó, ÀÎÅÍ³Ý ±³º¸¹®°íÀÔ´Ï´Ù.
°¡°ÔÁÖÀÎ : ±³º¸¹®°í
ÀüÈ­ ¹× ÅùèÁ¤º¸
ÀüÈ­ ¹× ÅùèÁ¤º¸
»óÇ° ¾È³» ¹× ȯºÒ, ±³È¯, ¹è¼Û¹®ÀÇ
- °¡°Ô ÀüÈ­¹øÈ£ : 1544-1900
- ÀüÈ­¹®ÀÇ ½Ã°£ : ¿ÀÀü 9½ÃºÎÅÍ ¿ÀÈÄ 6½Ã±îÁö
(¸ÅÁÖ ¿ù¿äÀÏ, È­¿äÀÏ, ¼ö¿äÀÏ, ¸ñ¿äÀÏ, ±Ý¿äÀÏ, °øÈÞÀÏ Á¦¿Ü)
- °¡°Ô À̸ÞÀÏ : ink@kyobobook.co.kr
- ÀÌ¿ë Åùèȸ»ç : CJ´ëÇÑÅë¿î
ÆǸŰ¡°ÔÁ¤º¸
- »ç¾÷ÀÚ¸í : (ÁÖ)±³º¸¹®°í
- »ç¾÷ÀÚµî·Ï¹øÈ£ : 102-81-11670
- Åë½ÅÆǸž÷½Å°í : 01-0653
- Çö±Ý¿µ¼öÁõ : ¹ß±Þ°¡´É
ÀüÈ­ÁÖ¹® ¹× °áÁ¦¹®ÀÇ
- ²ÉÇÇ´Â ¾Æħ¸¶À» : 1644-8422
°¡°Ô¿Í Á÷°Å·¡¸¦ ÇÏ½Ã¸é ²É¼ÛÀÌ Àû¸³ ¹× °¢Á¾ ÇýÅÿ¡¼­
Á¦¿ÜµÇ°í, ¸¸ÀÏÀÇ ¹®Á¦°¡ ¹ß»ýÇÏ´Â °æ¿ì¿¡µµ ²É¸¶ÀÇ
µµ¿òÀ» ¹ÞÀ¸½Ç ¼ö ¾ø½À´Ï´Ù. °¡°ÔÀÇ ºÎ´çÇÑ ¿ä±¸,
ºÒ°øÁ¤ ÇàÀ§ µî¿¡ ´ëÇؼ­µµ ²É¸¶·Î Á÷Á¢ ÀüÈ­ÁÖ¼¼¿ä.
 À̾߱â²É¹ç
µî·ÏµÈ À̾߱Ⱑ ¾ø½À´Ï´Ù.
»ó¼¼Á¤º¸ ±¸¸ÅÈıâ (0) »óÇ° Q&A (0) ¹è¼Û/±³È¯/ȯºÒ ¾È³»

Ã¥¼Ò°³

ÀÌ Ã¥Àº ÀüÀÚ±âÇÐÀ» ´Ù·é À̷м­ÀÌ´Ù. ÀüÀÚ±âÇÐÀÇ ±âÃÊÀûÀÌ°í Àü¹ÝÀûÀÎ ³»¿ëÀ» ÇнÀÇÒ ¼ö ÀÖ´Ù.

¸ñÂ÷

Translator' s Preface Dedication Contents Steele's Preface to the First Edition 1 Introduction 2 Field Properties 2.1 Introduction 2.2 Maxwell's Equations in the Dynamic, Quasi-Static, and Static Cases 2.3 Polarization and Magnetization 2.4 Laws for Static Fields in Unbounded Regions 2.5 Integral Represntations for Quasi-Static Fields Using the Helmholtz Theorem 2.6 Equivalent Configurations 2.7 Steady-State Dynamic Problems and Phasor Field Represntations 2.8 Continuity Conditions of Fields at a Medium Discontinuity References 3 Problem Definition 3.1 Introduciton 3.2 Field Problem Domains, Sourece Problem Domains, Interior Problems, and Exterior Problems 3.3 Iis the Problem Static, Quasi-Static, or Dynamic? 3.4 What Field Iss to Be Computed? 3.5 Is the Problem Two-Dimensional or Three-Dimensional? 3.6 The Medium 3.7 Boundary Conditions and Uniqueness of Solutions References 4 Linear Spaces in Field Computations 4.1 introduciton 4.2 Basis Functions 4.3 Shape Functions 4.4 Finite Elements and Shape Functions of Global Coordinates in Two-Dimensional Problem Domains 4.5 Isopapametric Shape Function in Two-Dimensions 4.6 Finite Elements and Shape Function of Global Coordinates in Three-Dimensional Problem Domains References 5 Projection Methods in Field Computations 5.1 Introduction 5.2 Special Space in Field Computations 5.3 Operators in Field Computations 5.4 Approaches Used in Obtating Approximate Solutions to Field Problems 5.5 Finite Element Method for Interior Problems 5.6 Integral Equation Method 5.7 Projecjton Methods 5.8 Orthogonal Projection Methods References 6 Finite Element Method for Interior Problems 6.1 Introduction 6.2 Formulaton of Finite Element Method for Interior Problems 6.3 Computation of Linear System for Finite Element Method 6.4 Sample Problem References 7 Finite Element Method for Exterior Problems 7.1 Introduction 7.2 McDonald-Wexler Algoritm 7.3 Silvester et al. Algoritm 7.4 Mapping Algorithms References 8 Automatic and Adaptive Mesh Generation 8.1 Introduciton 8.2 Preliminary Mesh Generation 8.3 Delaunay Tessellation 8.4 An Algorithm for Local and Globla Error Estimation 8.5 Mesh Refinement Algoritm References 9 Integral Equation Method 9.1 Introduction 9.2 Linear and Unform Media in Continunity Subdomains 9.3 Saturable, Nonlinear, and Nonuniform Media in Continuity Subdomains 9.4 Numerical Soluton of Integral Equations-General Approach 9.5 Finite Elements and Basis Functions Used in the Integral Equation Method 9.6 Integral Equation Numerical Solution by the Collocation Method 9.7 Integral Equation Numerical Solution by the Galerkin Method 9.8 Numerical Integration 9.9 Sample Problem References 10 Static Magnetic Problem 10.1 Introduction 10.2 Interior Static Field Problems 10.3 Exterior Static Problems Approximated by Interior Problems 10.4 Exterior Mangetic Field Static Problem 10.5 Static Mangetic Field in a Saturable Medium References 11 Eddy Current Problem 11.1 Introduction 11.2 Commonly Used Baisc Formulations for the Eddy Current Problem 11.3 Two-Dimensional Eddy Current Problem 11.4 Three-Dimensional Steady-State Eddy Current Problem 11.5 Transient Eddy Current Problem References Glossary Appendix A Derivation of the Helmholtz's Theorem Appendix B Properties of the Mangetic Vector Potential, A Appendix C Proof Regarding Split of Quadrangle into Two Triangles Appendix D Derivation of Formulations Used in the Csendes-Shenton Adaptive Mesh Algorithm Appendix E Integral Expressions for Scalar Potential from Green's Theotem Index
±¸¸ÅÈı⠱¸¸Å¸¸Á·µµ
ÀÌ »óÇ°¿¡ ´ëÇÑ ±¸¸ÅÈıâ´Â ±¸¸ÅÇϽŠºÐ¿¡ ÇÑÇØ 'ÁÖ¹®/¹è¼ÛÁ¶È¸'¿¡¼­ ÀÛ¼ºÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù.
ÀÛ¼ºµÈ ±¸¸ÅÈıⰡ ¾ø½À´Ï´Ù.
    »óÇ°Q&A
    »óÇ°¿¡ °üÇÑ ±Ã±ÝÇϽŠ»çÇ×À» ¹°¾îº¸¼¼¿ä!
    ±Û¾²±â
    ±Û¾²±â
      ¹è¼Û/±³È¯/ȯºÒ ¾È³»
      ¹è¼Û¾È³»
      - ÁÖ¹®±Ý¾×ÀÌ 15,000¿ø ÀÌ»óÀÎ °æ¿ì ¹«·á¹è¼Û, 15,000 ¹Ì¸¸ÀÎ °æ¿ì ¹è¼Ûºñ 2,500¿øÀÌ ºÎ°úµË´Ï´Ù. (´Ü, ¹«·á¹è¼Û »óÇ°ÀÇ °æ¿ì Á¦¿Ü)
      - ÁÖ¹® ÈÄ ¹è¼ÛÁö¿ª¿¡ µû¶ó ±¹³» ÀϹÝÁö¿ªÀº ±Ù¹«ÀÏ(¿ù-±Ý) ±âÁØ 1Àϳ» Ãâ°íµÊÀ» ¿øÄ¢À¸·Î Çϳª, ±â»ó»óȲ µîÀÇ ÀÌÀ¯·Î Áö¿¬µÉ ¼öµµ ÀÖ½À´Ï´Ù. (´Ü, ÀÏ¿äÀÏ ¹× °øÈÞÀÏ¿¡´Â ¹è¼ÛµÇÁö ¾Ê½À´Ï´Ù.)
      - µµ¼­ »ê°£ Áö¿ª ¹× Á¦ÁÖµµÀÇ °æ¿ì´Â Ç×°ø/µµ¼± Ãß°¡¿îÀÓÀÌ ºÎ°úµÉ ¼ö ÀÖ½À´Ï´Ù.
      - ÇØ¿ÜÁö¿ªÀ¸·Î´Â ¹è¼ÛµÇÁö ¾Ê½À´Ï´Ù.
      ±³È¯/ȯºÒ ¾È³»
      - »óÇ°ÀÇ Æ¯¼º¿¡ µû¸¥ ±¸Ã¼ÀûÀÎ ±³È¯ ¹× ȯºÒ±âÁØÀº °¢ »óÇ°ÀÇ '»ó¼¼Á¤º¸'¸¦ È®ÀÎÇϽñ⠹ٶø´Ï´Ù.
      - ±³È¯ ¹× ȯºÒ½ÅûÀº °¡°Ô ¿¬¶ôó·Î ÀüÈ­ ¶Ç´Â À̸ÞÀÏ·Î ¿¬¶ôÁֽøé ÃÖ¼±À» ´ÙÇØ ½Å¼ÓÈ÷ ó¸®ÇØ µå¸®°Ú½À´Ï´Ù.

      ±³È¯ ¹× ȯºÒ °¡´É »óÇ°¿¡
      ¹®Á¦°¡ ÀÖÀ» °æ¿ì
      1) »óÇ°ÀÌ Ç¥½Ã/±¤°íµÈ ³»¿ë°ú ´Ù¸£°Å³ª ºÒ·®(ºÎÆÐ, º¯Áú, ÆļÕ, Ç¥±â¿À·ù, À̹°È¥ÀÔ, Áß·®¹Ì´Þ)ÀÌ ¹ß»ýÇÑ °æ¿ì
      - ½Å¼±½ÄÇ°, ³ÃÀå½ÄÇ°, ³Ãµ¿½ÄÇ° : ¼ö·ÉÀÏ ´ÙÀ½³¯±îÁö ½Åû
      - ±âŸ »óÇ° : ¼ö·ÉÀϷκÎÅÍ 30ÀÏ À̳», ±× »ç½ÇÀ» ¾È ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏ À̳» ½Åû
      2) ±³È¯ ¹× ȯºÒ½Åû ½Ã ÆǸÅÀÚ´Â »óÇ°ÀÇ »óŸ¦ È®ÀÎÇÒ ¼ö ÀÖ´Â »çÁøÀ» ¿äûÇÒ ¼ö ÀÖÀ¸¸ç »óÇ°ÀÇ ¹®Á¦ Á¤µµ¿¡ µû¶ó Àç¹è¼Û, ÀϺÎȯºÒ, ÀüüȯºÒÀÌ ÁøÇàµË´Ï´Ù. ¹ÝÇ°¿¡ µû¸¥ ºñ¿ëÀº ÆǸÅÀÚ ºÎ´ãÀ̸ç ȯºÒÀº ¹ÝÇ°µµÂøÀϷκÎÅÍ ¿µ¾÷ÀÏ ±âÁØ 3ÀÏ À̳»¿¡ ¿Ï·áµË´Ï´Ù.
      ´Ü¼øº¯½É ¹×
      ÁÖ¹®Âø¿ÀÀÇ °æ¿ì
      1) ½Å¼±½ÄÇ°, ³ÃÀå½ÄÇ°, ³Ãµ¿½ÄÇ°
      ÀçÆǸŰ¡ ¾î·Á¿î »óÇ°ÀÇ Æ¯¼º»ó, ±³È¯ ¹× ȯºÒÀÌ ¾î·Æ½À´Ï´Ù.
      2) È­ÀåÇ°
      ÇǺΠƮ·¯ºí ¹ß»ý ½Ã Àü¹®ÀÇ Áø´Ü¼­ ¹× ¼Ò°ß¼­¸¦ Á¦ÃâÇϽøé ȯºÒ °¡´ÉÇÕ´Ï´Ù. ÀÌ °æ¿ì Á¦¹Ýºñ¿ëÀº ¼ÒºñÀÚ ºÎ´ãÀ̸ç, ¹è¼Ûºñ´Â ÆǸÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. ÇØ´ç È­ÀåÇ°°ú ÇǺΠƮ·¯ºí°úÀÇ »ó´çÇÑ Àΰú°ü°è°¡ ÀÎÁ¤µÇ´Â °æ¿ì ¶Ç´Â Áúȯġ·á ¸ñÀûÀÇ °æ¿ì¿¡´Â Áø´Ü¼­ ¹ß±Þºñ¿ëÀ» ÆǸÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù.
      3) ±âŸ »óÇ°
      ¼ö·ÉÀϷκÎÅÍ 7ÀÏ À̳» ½Åû, ¿Õº¹¹è¼Ûºñ´Â ¼ÒºñÀÚ ºÎ´ã
      4) ¸ð´ÏÅÍ ÇØ»óµµÀÇ Â÷ÀÌ·Î »ö»óÀ̳ª À̹ÌÁö°¡ ´Ù¸¥ °æ¿ì ´Ü¼øº¯½É¿¡ ÀÇÇÑ ±³È¯ ¹× ȯºÒÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.
      ±³È¯ ¹× ȯºÒ ºÒ°¡ 1) ½Åû±âÇÑÀÌ Áö³­ °æ¿ì
      2) ¼ÒºñÀÚÀÇ °ú½Ç·Î ÀÎÇØ »óÇ° ¹× ±¸¼ºÇ°ÀÇ Àüü ¶Ç´Â ÀϺΰ¡ ¾ø¾îÁö°Å³ª ÈѼÕ, ¿À¿°µÇ¾úÀ» °æ¿ì
      3) °³ºÀÇÏ¿© ÀÌ¹Ì ¼·ÃëÇÏ¿´°Å³ª »ç¿ë(Âø¿ë ¹× ¼³Ä¡ Æ÷ÇÔ)ÇØ »óÇ° ¹× ±¸¼ºÇ°ÀÇ °¡Ä¡°¡ ¼Õ»óµÈ °æ¿ì
      4) ½Ã°£ÀÌ °æ°úÇÏ¿© »óÇ°ÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
      5) »ó¼¼Á¤º¸ ¶Ç´Â »ç¿ë¼³¸í¼­¿¡ ¾È³»µÈ ÁÖÀÇ»çÇ× ¹× º¸°ü¹æ¹ýÀ» ÁöÅ°Áö ¾ÊÀº °æ¿ì
      6) »çÀü¿¹¾à ¶Ç´Â ÁÖ¹®Á¦ÀÛÀ¸·Î ÅëÇØ ¼ÒºñÀÚÀÇ ÁÖ¹®¿¡ µû¶ó °³º°ÀûÀ¸·Î »ý»êµÇ´Â »óÇ°ÀÌ ÀÌ¹Ì Á¦ÀÛÁøÇàµÈ °æ¿ì
      7) º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
      8) ¸À, Çâ, »ö µî ´Ü¼ø ±âÈ£Â÷ÀÌ¿¡ ÀÇÇÑ °æ¿ì