»óÇ° ¾È³» ¹× ȯºÒ, ±³È¯, ¹è¼Û¹®ÀÇ | |
- °¡°Ô ÀüȹøÈ£ : | 1544-1900 |
- Àüȹ®ÀÇ ½Ã°£ : |
¿ÀÀü 9½ÃºÎÅÍ ¿ÀÈÄ 6½Ã±îÁö (¸ÅÁÖ ¿ù¿äÀÏ, È¿äÀÏ, ¼ö¿äÀÏ, ¸ñ¿äÀÏ, ±Ý¿äÀÏ, °øÈÞÀÏ Á¦¿Ü) |
- °¡°Ô À̸ÞÀÏ : | ink@kyobobook.co.kr |
- ÀÌ¿ë Åùèȸ»ç : | CJ´ëÇÑÅë¿î |
ÆǸŰ¡°ÔÁ¤º¸ |
|
- »ç¾÷ÀÚ¸í : | (ÁÖ)±³º¸¹®°í |
- »ç¾÷ÀÚµî·Ï¹øÈ£ : | 102-81-11670 |
- Åë½ÅÆǸž÷½Å°í : | 01-0653 |
- Çö±Ý¿µ¼öÁõ : ¹ß±Þ°¡´É |
|
ÀüÈÁÖ¹® ¹× °áÁ¦¹®ÀÇ |
|
- ²ÉÇÇ´Â ¾Æħ¸¶À» : | 1644-8422 |
°¡°Ô¿Í Á÷°Å·¡¸¦ ÇÏ½Ã¸é ²É¼ÛÀÌ Àû¸³ ¹× °¢Á¾ ÇýÅÿ¡¼ Á¦¿ÜµÇ°í, ¸¸ÀÏÀÇ ¹®Á¦°¡ ¹ß»ýÇÏ´Â °æ¿ì¿¡µµ ²É¸¶ÀÇ µµ¿òÀ» ¹ÞÀ¸½Ç ¼ö ¾ø½À´Ï´Ù. °¡°ÔÀÇ ºÎ´çÇÑ ¿ä±¸, ºÒ°øÁ¤ ÇàÀ§ µî¿¡ ´ëÇؼµµ ²É¸¶·Î Á÷Á¢ ÀüÈÁÖ¼¼¿ä. |
»ó¼¼Á¤º¸ | ±¸¸ÅÈıâ (0) | »óÇ° Q&A (0) | ¹è¼Û/±³È¯/ȯºÒ ¾È³» |
Ã¥¼Ò°³ÀÌ Ã¥Àº ¿Ü±¹¾î·Î ¾²¿©Á® ÀÖ½À´Ï´Ù.
¸ñÂ÷Chapter 1. Some Preliminaries
Chapter 2. Groebner Bases
Chapter 3. Immediate Consequences of Groebner Bases
Chapter 4. Theory of Invariants
Chapter 5. Elimination Theory and Polynomial Mappings
Chapter 6. Elimination Theory and Resultants
Appendix A. An Introduction to Algebraic Analysis
Appendix. Bibliography
Appendix B. Computer Algebra Systems
Appendix C. Suggestions for Further Reading and References
Appendix. Index |
±³È¯ ¹× ȯºÒ °¡´É |
»óÇ°¿¡ ¹®Á¦°¡ ÀÖÀ» °æ¿ì |
1) »óÇ°ÀÌ Ç¥½Ã/±¤°íµÈ ³»¿ë°ú ´Ù¸£°Å³ª ºÒ·®(ºÎÆÐ, º¯Áú, ÆļÕ, Ç¥±â¿À·ù, À̹°È¥ÀÔ, Áß·®¹Ì´Þ)ÀÌ ¹ß»ýÇÑ °æ¿ì - ½Å¼±½ÄÇ°, ³ÃÀå½ÄÇ°, ³Ãµ¿½ÄÇ° : ¼ö·ÉÀÏ ´ÙÀ½³¯±îÁö ½Åû - ±âŸ »óÇ° : ¼ö·ÉÀϷκÎÅÍ 30ÀÏ À̳», ±× »ç½ÇÀ» ¾È ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏ À̳» ½Åû 2) ±³È¯ ¹× ȯºÒ½Åû ½Ã ÆǸÅÀÚ´Â »óÇ°ÀÇ »óŸ¦ È®ÀÎÇÒ ¼ö ÀÖ´Â »çÁøÀ» ¿äûÇÒ ¼ö ÀÖÀ¸¸ç »óÇ°ÀÇ ¹®Á¦ Á¤µµ¿¡ µû¶ó Àç¹è¼Û, ÀϺÎȯºÒ, ÀüüȯºÒÀÌ ÁøÇàµË´Ï´Ù. ¹ÝÇ°¿¡ µû¸¥ ºñ¿ëÀº ÆǸÅÀÚ ºÎ´ãÀ̸ç ȯºÒÀº ¹ÝÇ°µµÂøÀϷκÎÅÍ ¿µ¾÷ÀÏ ±âÁØ 3ÀÏ À̳»¿¡ ¿Ï·áµË´Ï´Ù. |
´Ü¼øº¯½É ¹× ÁÖ¹®Âø¿ÀÀÇ °æ¿ì |
1) ½Å¼±½ÄÇ°, ³ÃÀå½ÄÇ°, ³Ãµ¿½ÄÇ° ÀçÆǸŰ¡ ¾î·Á¿î »óÇ°ÀÇ Æ¯¼º»ó, ±³È¯ ¹× ȯºÒÀÌ ¾î·Æ½À´Ï´Ù. 2) ÈÀåÇ° ÇǺΠƮ·¯ºí ¹ß»ý ½Ã Àü¹®ÀÇ Áø´Ü¼ ¹× ¼Ò°ß¼¸¦ Á¦ÃâÇϽøé ȯºÒ °¡´ÉÇÕ´Ï´Ù. ÀÌ °æ¿ì Á¦¹Ýºñ¿ëÀº ¼ÒºñÀÚ ºÎ´ãÀ̸ç, ¹è¼Ûºñ´Â ÆǸÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. ÇØ´ç ÈÀåÇ°°ú ÇǺΠƮ·¯ºí°úÀÇ »ó´çÇÑ Àΰú°ü°è°¡ ÀÎÁ¤µÇ´Â °æ¿ì ¶Ç´Â Áúȯġ·á ¸ñÀûÀÇ °æ¿ì¿¡´Â Áø´Ü¼ ¹ß±Þºñ¿ëÀ» ÆǸÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. 3) ±âŸ »óÇ° ¼ö·ÉÀϷκÎÅÍ 7ÀÏ À̳» ½Åû, ¿Õº¹¹è¼Ûºñ´Â ¼ÒºñÀÚ ºÎ´ã 4) ¸ð´ÏÅÍ ÇØ»óµµÀÇ Â÷ÀÌ·Î »ö»óÀ̳ª À̹ÌÁö°¡ ´Ù¸¥ °æ¿ì ´Ü¼øº¯½É¿¡ ÀÇÇÑ ±³È¯ ¹× ȯºÒÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. |
|
±³È¯ ¹× ȯºÒ ºÒ°¡ |
1) ½Åû±âÇÑÀÌ Áö³ °æ¿ì 2) ¼ÒºñÀÚÀÇ °ú½Ç·Î ÀÎÇØ »óÇ° ¹× ±¸¼ºÇ°ÀÇ Àüü ¶Ç´Â ÀϺΰ¡ ¾ø¾îÁö°Å³ª ÈѼÕ, ¿À¿°µÇ¾úÀ» °æ¿ì 3) °³ºÀÇÏ¿© ÀÌ¹Ì ¼·ÃëÇÏ¿´°Å³ª »ç¿ë(Âø¿ë ¹× ¼³Ä¡ Æ÷ÇÔ)ÇØ »óÇ° ¹× ±¸¼ºÇ°ÀÇ °¡Ä¡°¡ ¼Õ»óµÈ °æ¿ì 4) ½Ã°£ÀÌ °æ°úÇÏ¿© »óÇ°ÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì 5) »ó¼¼Á¤º¸ ¶Ç´Â »ç¿ë¼³¸í¼¿¡ ¾È³»µÈ ÁÖÀÇ»çÇ× ¹× º¸°ü¹æ¹ýÀ» ÁöÅ°Áö ¾ÊÀº °æ¿ì 6) »çÀü¿¹¾à ¶Ç´Â ÁÖ¹®Á¦ÀÛÀ¸·Î ÅëÇØ ¼ÒºñÀÚÀÇ ÁÖ¹®¿¡ µû¶ó °³º°ÀûÀ¸·Î »ý»êµÇ´Â »óÇ°ÀÌ ÀÌ¹Ì Á¦ÀÛÁøÇàµÈ °æ¿ì 7) º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì 8) ¸À, Çâ, »ö µî ´Ü¼ø ±âÈ£Â÷ÀÌ¿¡ ÀÇÇÑ °æ¿ì |